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1 Introduction

Products such as photographic film and paper are made and
processed in continuous sheets known as webs. During these
operations a web follows a complicated path over, under, and
around various rollers, coaters, drers, and other devices. Air
reversers are used in this path to change the moving direction
of a coated wet web without touching it. As shown in Fig. 1,
an air reverser is a large diameter hollow drum with holes in
its surface. Air is pumped through these holes to create an air
cushion on top of which the web can float. No contact is permit-
ted between the web and the surface of the air reverser. The
pressure distribution in the clearance between the web and the
air reverser is determined by the size and distribution of the
holes and the pressure inside the drum. In order to design air
reversers that achieve adequate web flotation with minimum air
flow, it is desirable to develop a theoretical model of the system.

Other applications of using an air cushion to float materials
include externally pressurized bearings used in tape convey-
ance, air film conveyors used in wansport of packages, and
hovercraft. Even though the end result in these applications is
to separate two surfaces, different hydrodynamic effects are at
work. For example, at low operating clearances on the order of
microns, common to tape and package conveyance, viscous
forces dominate the air pressure generation. (Chandra et al.,
1990; Gross, 1980, Chapter 6.5). On the other hand, in the
air jet of a hovercraft, where the clearance is on the order of
centimeters, the inertial forces are more important (Elsley and
Devereux, 1968). In the former situation the air flow is com-
monly represented by the Reynolds equation and in the latter
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cal formula and the one-dimensional air-jet theory developed for hovercraft. Condi-
tions that maximize the air pressure supporting the web are analyzed and design
guidelines are deduced.

situation by Euler’s equations. See Gross (1980, Chapter 5) for
more on the classification of the externally pressurized inter-
faces. The ratio of the inertial to viscous forces in a narrow
channel, given by the modified Reynolds number Re * = pUh?/
pL, is a good measure of which approach should be taken. In
the definition of Re*, p is the density and u is the viscosity of
the fluid, U is a speed representative of the flow, A is the clear-
ance height, and L is a scale length in the flow field (Hamrock,
1994). .

The weight of a hovercraft is balanced by the *‘cushion pres-
sure’’ generated by the airjet(s) placed on the skirt of the vehi-
cle. Analytical expressions for this pressure can be found in
Elsley and Devereux (1968) for the incompressible case and
in Pozzi et al. (1993) for the compressible case. An air reverser
usually has a complicated hole pattern as shown in Fig. 1 and
in general the flow is two-dimensional in the plane of the web.
Therefore the expressions developed for the hovercraft has lim-
ited use only for air-reversers with a specific hole pattern. Here
we report on the general equations governing the two-dimen-
sional air flow in an air cushion without any restrictions on the
hole pattern.

In this paper we assume that the location of the web is fixed
and known. The coupling between a flexible moving web and
the air flow will be presented later. The equations goveming
the air flow are Euler’s equations for momentum balance and
the mass continuity equation, both with nonlinear source terms
representing the holes. These equations are averaged over the
spacing between the web and the reverser to obtain a two-
dimensional model of the air flow in the plane of the web. An
analytical solution of these equations can be found for the one-
dimensional case with a constant gap height. The two-dimen-
sional case is solved numerically.

2 Governing Equations

A balance of the forces acting on a membrane-like web re-
quires that the air pressure p and the ‘‘belt-wrap’’ pressure 7/
(RL,) be in equilibrium (Miiftii and Benson, 1996). Here T is
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Fig. 1 Schematic view of a web moving over an air reverser under tension T and with speed V

the web tension, R is the reverser radius, and L, is the web
width, as shown in Fig. 1. For the typical values R = 0.25 m,
L,=15m, and T = 200 N, the pressure required to support
the web is approximately p = 533 Pa.

The supply pressure inside the air reverser is typically po =
800 Pa. The velocity U through one of the holes of the air
reverser can be estimated from Bemoulli’s equation

p+ipUt=po, or U=(2(po—pYp)"= (1)
where p is the density of air, which is 1.2 kg/m’ at room
conditions (Gerhart et al., 1992). For po — p = 267 Pa, this
gives U = 21 m/s. Velocities throughout the flow field are
generally of the same order of magnitude as U. The gap between
the web and the surface of the reverser is typically about 4 mm.
Using L, = 0.8 m as the length scale we find Re* = 14.5.
This indicates that inertial forces dominate over viscous forces.

Moreover, the fact that the Reynolds number Re = pUh/p is .

5450 indicates that the flow is turbulent (z = 1.85 X 10~*
Nsm™?). Therefore, it is concluded that the effect of viscosity
on pressure is negligible in the air reverser flow.

The diameter of the air reverser is large enough to make .

centrifugal effects negligible in the flow, so the cylindrical ge-
ometry of the problem can be unrolled onto a plane, as shown
in Fig. 1. Here the x-axis is along the circumferential direction,
the y-axis is along the axial direction, and the z-axis is perpen-
dicular to the surface of the reverser. The flow field covers a
rectangular region in the xy-plane. The web travels in the +x
direction, but its velocity (~2 m/s) is generally small compared
to the velocity of the air under the web.

We assume that the clearance h between the web and the air
reverser is small enough that the air flow can be considered
- two-dimensional. We thus neglect the velocity in the z direction
and assume that the pressure p and the velocities z and v in the
x and y directions, respectively, are functions of x and y but not
z. The assumption of two-dimensional flow is not valid in the
_ vicinity of each of the holes, but the details of the flow near
the holes should not be important if the net effect of the mass
and momentum flux through the holes is estimated correctly.

We assume that the holes in the reverser surface are suffi-
ciently close together that they can be considered a uniform,
distributed flow source. They can then be described by a single
parameter ¢, the ratio of the total cross-sectional area of the
holes to the total surface area. For circular holes of radius 7
arranged in a rectangular pattern with spacings b and ¢, as
shown in Fig. 2(a), we have a = w=ri/bc. At different parts
of the reverser the hole density may be different. If there are
no holes, ¢ = 0. :

The equations describing the flow field can be derived by
averaging the equations of conservation of mass and momentum
over the clearance between the air reverser and the web
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(Lewis). We also assume that the flow is incompressible and
neglect viscous forces. This gives

6h Shu  Oh
o L9 L U
% + Ee + o a (2a)
Su Bu u _ u
p-a—t-i-puax-i-puay-ra = c:pUh (2b)
& v &  Op . v
— — — e ——— = - -—
Py trug g Y T Tely (29

Equation (2a) is a form of the mass condnuity equation with
a source term al/. The terms on the right-hand sides of (2b)
and (2c) represent the effect of the momentum flux through
the holes. The pressure gradients created by these terms are
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Fig. 2(b) One half of the ono-d'unensior;al problem
Fig. 2 'Schematic view of the air reverser
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proportional to the mass flow rate kaU and the local flow field

velocities u and v.

In addition to Egs. (2), it is necessary to specify the average
velocity U through the holes. In general U is not constant, but
varies from hole to hole and depends on the solution for the
flow field. A reasonable first-order assumption is that U is a
function of the pressure drop across the hole po — p, where po
is the pressure inside the reverser (the supply pressure) and p
is the local pressure under the web. In the absence of frictional
losses, U would be given by Bernoulli’s Eq. (1). If we assume
that frictional losses are a fixed fraction of the original potential
energy we get instead

U = x(2(po — p)/p)"* = kUs(1 — p/p)'*  (3)
where U, = V2po/ p, and where « is an empirical constant, lying
between 0 and 1, which is commonly called the discharge coef-
ficient. This equation is generally used in calculating the flow
rate across the orifice of a flow measuring device; x accounts
for the losses due to turbulence and the contraction of the effec-
tive flow area near the orifice (Gerhart et al., 1992).

In our problem there is a more complicated mechanism for
both momentum loss and exchange near a pressure hole. In the
reverser gap the air jet coming through a hole is affected by
both the web and the cross flow present in the gap, creating a
very complicated three-dimensional flow. In general a wall,
such as the web, placed in front of a jet stagnates the flow and
hence causes pressure to rise (Rajaratnam, 1976, p. 231). If
the jet velocity U is a function of the pressure drop across the
hole then the presence of the web would reduce the average jet
exit velocity. A different effect occurs in the presence of cross
flow. When a jet is injected into a cross flow it locally retards
the cross flow on the upstream side of the jet and causes rarefac-
tion on the downstream side. Thus the pressure in the mixing
fluid rises on the upstream side and drops on the down stream
side. This pressure difference causes the jet to deflect (Abra-
movich, 1963, p. 542). Trying to approximate the combined
interaction of these two effects by a single parameter « is obvi-
ously an oversimplification, but it allows us to circumvent the
solution of a very complicated three-dimensional problem. A
separate and more detailed study of the discharge coefficient

under the conditions described in this paragraph would be use- -

ful. -

In an experiment without the web, the discharge coefficient

for typical air reverser holes was estimated to be 0.65 (Lewis).
" If the gap between the web and the air reverser were large
compared to the hole diameter, we would expect this value to
be valid here. In practice, however, the gap is approximately
equal to the hole diameter, which produces the complicated
fiow pattern described above, and makes it reasonable to expect

that a different value may be appropriate. In fact, as will be_

seen later using a higher value of x gives a closer match to
empirically obtained pressures. :

We assume that for most practical applications air will be
flowing out of the web-reverser interface. Therefore we have
an ‘‘outflow boundary’’ situation, where it is sufficient to pre-
scribe only one boundary condition to obtain a well-posed
boundary value problem (Fletcher, 1991). Indicating the outer
periphery of the air reverser by B, we set the pressure to the
ambient value _

p=0 on B. 4)

Note that p is given in terms of gauge pressure.

3 'Analytical Solution -

Some insight into the full two-dimensional problem can be
obtained by considering a one-dimensional model. The one-
dimensional model can be expected to be approximately correct
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along and near the centerline of the web in either the x or y

direction. : :
If we assume that the flow is only in the x direction, then the

steady-state versions of Eqs. (2a) and (2b) become

4 (hu) = aU (5a)
dp du palU
— — + — 3
+ pu e p u=0 (5b)

where U is again given by (3), and where £is a local coordinate
for the region with sources, as shown in Figure 2(b). Equations
(3) and (5) are still nonlinear, but if the clearance h between
the air reverser and the web is constant, they can be solved
exactly. In particular, substitution of (3) into (5a) gives

()
P=ph xalUgdt) |~

Substitution of (3) and (6) into (5b) then gives the linear
ordinary differential equation

du ke \?
E - 2(7> u=20.

The symmetrical air reverser shown in Fig. 2(b) contains two
regions of width  with holes and a central region without holes.
The total width of the web is L,. By symmetry, the solutions
for the regions on the left and right will be identical, and the
solution for the central region will be given by p = constant
and u = 0. The appropriate boundary conditions for the region
on the right are u = 0 at the edge of the central region ¥ = 0,
and p = 0 at the edge of the web X = [. Using these boundary
conditions, the solution for the right-hand region can be found
to be ’

(6)

(7

sinh (mx/])

) = U, 8
) u 032 cosh (m) (8a)
_ _ { cosh (mx/D\?
P —po[l"-- ( cosh (m) ) ] (8b)
where
m=12 "—};‘-‘1 (9)

The dimensionless parameter kal/h is the ratio of the effec-
tive area of the holes to the total exit area at the edge of the
web. The higher this parameter, the more difficult it is for the
flow to exit from under the web, and therefore the higher the
pressure that is generated, as can be seen from Eq. (8b).

4 Numerical Solution

The full two-dimensional problem cannot be solved analyti-
cally. We used a numerical method, whose details can be found
in Miiftd et al. (1997), to solve the governing equations. This
method employs a pseudo-transient iteration algorithm to calcu-
late the steady-state solution where Eq. (2a) is replaced by

dph of 8hu  Ohv 2

—_ —t— = U. 10
o1 "“(ax ay) pae (10)
In this equation a? is a constant which can be considered an
artificial speed of sound (Fletcher, 1991, Vol. 2, p. 356). In
this method the discrete time-step At which is introduced later
and a? act like relaxation constants between the iterations.
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During the solution iterations the air pressure p can some-
times become higher than the supply pressure p,. When this
occurs, the air velocity U is replaced by U*;

. -k(2|po = pllp)'"?
k(2| po — plip)'"?

if p>po

. (11)
if Po > pD.

These sinks typically occur where two regions of substantially
different hole densities « are placed close to each other. They
disappear at steady state.

For convenience the following notation is used throughout
this paper. The solution domain of the governing equation is
indicated by S = {(x,y):0=x=L,and 0 s y = L,} where
x,y, L, and L, are as shown in Fig. 1. This domain is divided
into two subdomains: § = B U I, where the inner domain is /
= {(x,y):0<x< L,and 0 < y < L,}. The inner domain
I is further subdivided into /s where there are pressure sources
and I, where there are no pressure sources. The boundary B.=
B, U B, U By U B, is composed of the four edges:

Bi={(x,y):x=0,0=y=1L,},
By ={(x,y):y=0,0=x= 1L},
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Fig. 3 Air velocity and pressure profiles at steady state. Note that (a)

shows only the lower left quarter of the solution domain; the solution is -

symmetrical with respect tox = L,/2 andy = L,/2 (p, = 800 Pa, hy = 3
mm, and ay_, = 0.0084).

174 / Vol. 65. MARCH 1998

04 " TD-Predsure ——
2D-p(x,Ly2) —
2D-p(Lx/2.y) —— L
03+ - - ID-u - S
2D-u(i,xlzl2) — e
. 2D-v(Lx/2)y) -~ /

02} — -

p/Po, wUo

0 0.2 0.4 0.6 0.3 1
x/1, yNi

Fig. 4 Comparison of a one-dimensional analytical solution with two-
dimensional numerical resuits (ay.. = 0.0084, hy = 3 mm, and p, = 800
Pa)

By={(x,»):y=L.,0=x= L]},
Bi={(x,y):x=L,0=y=<L,}.

The solution domain is discretized using a uniform rectangular
mesh with Ax = L,/(M — 1) and Ay = L,/(N — 1) spacing
between the nodes in the x and y directions, respectively, where
M and N are the total number of discretization points along the
x and y-axes. In I, Egs. (2b, ¢) and (10) are discretized using
second-order accurate central finite difierence formulas. On B,
velocities u and v are extrapolated from the inside solution and
p is given by the pressure boundary condition (4).

Using the central finite difference formulas to discretize the
governing equations uncouples the grid points in an odd-even
fashion. This uncoupling causes an aliasing error (Hirsch, 1988,
Vol. 1, p. 325). The aliasing is eliminated by adding artificial
viscosity which transforms the discretzed equations to an up-
wind equivalent formulation (Kwak et al.. 1986). The artificial
viscosity is provided by the following marrix operators, whose
use is shown later in Eq. (14),

—(CHAG™Y = (e + LYAGE'  (120)

—[C1{q"} = —€(Lm + L) gk (12b)
where g7 is one of the u, v, and p at current time level n and
mesh point k, and Ag;*' = g;*' — gi. The parameters ¢; and
€. are the implicit and explicit artificial viscosity constants and
the [C;] and [C,] are the matrix representation of the viscosity
operators. For example in the y direction the difference opera-
tors are Lymuk = (ug...z - 4u,¢.,.| + 6llk - -‘.-llt_‘ + uk._g) and L,,,u,,
= (Ugs1 — 2uy + Uy ). Using ¢; = 2¢, leads to unconditional
stability (Pulliam, 1985). On nodes adjacent to B the artificial
viscosity is applied using special forms for Egs. (12) (Miiftii
et al., 1997).

We use the Crank-Nicholson method, which provides an un-
conditionally stable time-stepping algorithm (Fletcher, 1991),
for the discretizing Egs. (10), (2b, ¢) in time. This gives, for
example, for Eq. (2b),

vt - uf

At

-1 Lt
+- (P s =0,

(13)

N

where n + 1 is the unknown time level. and Ar is the time-
step size. The residuals 7'V, r®, and r**’ are obtained by col-
lecting the time-independent terms of (10), (25, ¢) on the left-
hand side of the equations, respectively. The resulting equations
are still nonlinear. They are linearized around a known time
level ¢* using Taylor series expansions.

After applying the time discretization, performing lineariza-
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tion and adding the artificial viscosity operators given above,

the system of equations can be represented in the following
matrix form:

=(R"} - [C.H4g"} = (LI - [GD(Ag™')  (14)

where (R"} = ({r)} (r@") (r®"}))7, (Ag™') =
{{Aw') {Av™'} {Ap™*'} )T, and [J7] is the Jacobian ma-
trix. The bandwidth of the matrix ([J"] — [C:]) is 3N. This
matrix is nonlinear, therefore it is inverted at every time step.
We use the successive-over-relaxation method to solve (14).
The solution advances in time by

{¢"') = {q") + {Bg™). (15)

The solution process starts with zero initial conditions, {¢°)
= 0.

5 Results

Typically the pressure holes are distributed around the outer
edges of the air reverser, and there is a large area in the middle
with no holes as shown in Fig. 1; in terms of the notation
introduced before we have four inner regions with sources, Is,
— Iss, and one sourceless inner region, I, marked ‘0.’ The
physical dimensions of the air reverser considered here are L,
=0.8m, L, = 1.52 m, and [ = 0.2 m. The hole density « varies

from 0.008 to 0.05, and the supply pressure p, vanes from 200
to 800 Pa. The discharge coefficient is x = 0.65, and the spacing
between the web and the air reverser has a constant value h(x,
¥) = ho = 3 mm unless otherwise stated in the figure captions.
The values a = 139 m/s, At = 10725, ¢, =25 X 1073, M =
21 and N = 39 along with the relation ¢; = 2¢, were used in all
of the cases shown here, and were selected based on numerical
experiments (Miiftii et al., 1997).

5.1 Comparison of the One-Dimensional and the Two-
Dimensional Solutions. Figure 3 shows a typical steady-state
solution. In part (a) we give the air velocity vector, V(x, y).
In contrast to the one-dimensional analytical solution, where
we assumed the air flow is zero at the inner edge of the source
region, we make no assumptions about the flow conditions in
I, in the numerical solution. Upon examining this figure we see
that there is very little flow in Jo. Furthermore, the outflow
from B is nearly uniform and perpendicular to each edge, thus
approximately one-dimensional, except near the corner regions.

Figure 3(b) shows the two-dimensional air pressure profile
corresponding to this case. Here we see that the pressure attains
a constant value in the sourceless region, Jp, and in I5 _4 it
gradually falls to ambient level on the outer edge, B. The pres-
sure in the middle region is nearly uniform. and the one-dimen-
sional assumption again seems to be valid. except near the
corners of the reverser.
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Fig. 5 The effect of hole density on the steady-state pressure profile (h, = 3 mm and p, = 800 Pa)
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In F1g. 4 we compare the velocity profile from a one-dimen-

sional solution with a calculated two-dimensional solution along
the lines ¥ in /5; and ¥ in /s2. In general. the two-dimensional
solution shows slightly higher velocities and lower pressures
than the one-dimensional solution. The pressure profile in T is
slightly higher than in y. This is caused by the fact that /5, has
3.8 times larger hole area (thus air in-flow) compared to Is,.

5.2 Maximizing the Average Pressure. The air pressure
distribution under the web can be changed by adjusting the
source densities in regions /g;_4. Figure 5 shows the effect of
using different densities in different regions. When the source
density is tripled in /5, and I3 with respect to the case shown
in Fig. 3, the steady-state pressure takes the rather interesting
distribution shown in Fig. 5(a). Here we see that the pressure
in regions /5, and /53 reach a maximum of 355 Pa and in regions
I, and I, a maximum of 300 Pa. On the other hand, if we use
the one-dimensional assumption, then the pressure at the inner
edge of a source region (X = 0) given by (8b)

' 1
= ] - —— 16
P Po[ cosh_(m)] (16)
would be 666 Pa (m = 1.54) and 179 Pa (m = 0.51) in Is5;4
0.75F
0.5:—-——» L N N U Y
— - D W T Y
[— &+ - Ny g
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0'25_——/r|\\\\l
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Fig. 6 These two cases and the case shown in Fig. 7(b) have equivalent
total hole area. The flow pattem and subsequently the pressure profile
are greatly affected by the location and density of the holes (h; = 3 mm
and p, = 800 Pa).
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Fig. 7 The effect of the hoie area ratlo I' = Gamma on the ratio P, /P,
for a fixed total hole area of 0.0167 m?. The maximum pressure occurs
for a uniform o distribution {(p, = 800 Pa, h, = 3 mm).

and 5, 4, respectively. This indicates that the total average pres-
sure in this situation is a suboptimal combination of the four
source regions.

A more uniform pressure distribution is obtained, as shown
in part (b) of Fig. 5, when we keep the source density in /5.5
at its original level of 0.0084 but increase the density in regions,
I5; 5. In this case the maximum of calculated pressure in regions
I, and Is, is 610 Pa and slightly lower in regions I5» and Is;.
Note that this is very close to the p, value of the one-dimensional
case mentioned above.

The air flow vectors V corresponding to these cases are also
given in Fig. 5. In both these cases the air flow is from high-
pressure regions to low-pressure regions. as would be expected.
We see that the flow direction is reversed by increasing the
source density in the side regions. This situation indicates that
the air flow from the side source areas /-5 can be used to
“‘block’’ the main air-flow coming from the larger areas /s, 4.

In order to show this biocking effect several cases with differ-
ent a3 and a,, values were evaluated for a constant total air
inflow area 2/(atz5(L, — 21) + a, s L,) = 0.0167. Figure 6 shows
the air velocity profiles forI' = < and I = 3.8, where I is the
ratio of the air flow rate into the different source regions

(17)

The I'"" = = case has no holes in the side region, and the latter
case has a uniform a value. When there are no holes in the side
region the air can escape from the edges B. and B; with high
velocity resulting in lower pressure. In contrast, when the side
region has pressure holes the air flow in the no source region
is reduced and the sources of the two regions are almost *‘sepa-
rated’’ from each other. In this case the pressure generated in
the mid region is higher. In order to evaluate the effect of the
density distributions we use the average pressure p,,. obtained
by dividing the numerically integrated two-dimensional pres-
sure distribution by the total reverser area.

In fact, when we look at the effect of T" on the average
pressure, given in Fig. 7, we see that the maximum occurs at
T" = 3.8 (uniform e). In this case the pressure distribution on
all four side regions is nearly identical. Thus very little pressure
gradient exist to cause flow in the no-source region. Therefore,
the average pressure attains the optimal value. This shows that,
as the pressure in the no-source region is a function of the ratio
allh, it is crucial to keep this ratio constant throughout the
whole reverser surface, in order to oprimize the average pres-
sure in the clearance.

5.3 The Effect of al/h on Average Pressure. Figure 8
shows a plot of the average pressures as a function of the
parameter al/h calculated by the one-dimensional and two-
dimensional solutions, an empirical relation and the air-jet the-
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Fig. 8 Average pressure under the entire web as a function of dimen-
sionless parameter al/h (e, = 2.5 X 1072, p, = 800 Pa)

ory. A uniform « value was used in all four source domains
for the two-dimensional calculations.

The average pressure for the one-dimensional solution over
the entire web area is

21 2
Pave = (I - z)p. + (Z)ﬁ (18)

sinh (2m)

where

I il 2m
g=- dx = ] - . 19
# [ J;p * p°|: 1 + cosh (Zm)} (19)

Blackmun’s formula is a semi-empirical relation based on data
for two-dimensional reversers with values of «l/h between
about 0.4 and 1 given by

—2allh

1—e
5=po| 1 — 124 —— 20
p po[ Py } (20)

{Blackmun).

An analytical expression for the cushion pressure p, for the
hovercraft is obtained by integrating the Euler’s equations along
and across the stream lines of the air jet when the pressure on
the inside of the air jet is assumed to be p, and on the outside
of the air-jet it is assumed to be the ambient pressure P,,

p1 = po(l — e™). (21)

Here py is the supply pressure and x = 2r,// when the jets are
perpendicular to the ground (Elsley and Devereux, 1968). The
diameter of the air-hole is given by 2r;. In Fig. 8 the air-jet Eq.
(21) is used by assuming that x = al/h, (or 2r; = al).
Except for the air-jet formula, the results agree reasonably
well. The two-dimensional solution is always lower than the
one-dimensional solution due to the existence of the corner
regions, where the actual pressure is lower than what the one-
dimensional solution predicts. In the range 0 = al/h = 1,
both the one-dimensional and two-dimensional solutions for
discharge coefficient k = 0.65 predict lower average pressures
than Blackmun’s formula. If we increase « to 1, the two-dimen-
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sional solution agrees quite well with Blackmun’s formula. This
suggests that the effective discharge coefficient may be higher
than 0.65. Further experimentation to determine the discharge
coefficient might be warranted.

6 Summary and Conclusions

The equations governing the air flow in an air reverser are
derived. The flow is averaged across the clearance, which is
much smaller than the other dimensions of the problem; the
resulting equations apply in the plane of the reverser. An analyt-
ical solution for the governing equations is found for the case
in which the flow is one-dimensional and web-reverser gap
is constant. Comparing this solution with the two-dimensional
numerical solution shows that the flow is approximately one-
dimensional along each edge, except near the comners. As a
result of this, the average pressure under the web is overesti-
mated by the one-dimensional solution. The parameter xal/h,
the ratio of the effective hole area to the total exit area, is the
main factor in controlling the average pressure under the web:
in general, increasing xa!/h results in higher average pressure.
Two-dimensional analysis of the problem showed that dissimi-
lar hole densities in the source regions may cause air flow in
the no-source region, leading to reductions in the average pres-
sure and a nonuniform pressure distribution. The average pres-
sure is maximized when the ratio ke//h is kept uniform on the
outer periphery of the reverser surface.
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